Environmental Protection Agency

- (b) [Reserved]
- (c) Diurnal emissions. Evaporative hydrocarbon emissions may not exceed 0.2 grams per gallon of fuel tank capacity when measured using the test procedures specified in §1048.501. Diurnal emission controls must continue to function during engine operation.
- (d) Running loss. Liquid fuel in the fuel tank may not reach boiling during continuous engine operation in the final installation at an ambient temperature of 30 °C. Note that gasoline with a Reid vapor pressure of 62 kPa (9 psi) begins to boil at about 53 °C at atmospheric pressure, and at about 60 °C for fuel tanks that hold pressure as described in §1048.245(e)(1)(i).
- (e) Installation. If other companies install your engines in their equipment, you may introduce your engines into U.S. commerce without meeting all the requirements in this section. However, you must give equipment manufacturers any appropriate instructions so that fully assembled equipment will meet all the requirements in this section, as described in §1048.130. Your instructions may specify that equipment manufacturers may alternatively use other fuel-system components that have been certified under 40 CFR part 1060. Introducing equipment into U.S. commerce without meeting all the requirements of this section violates 40 CFR 1068.101(a)(1).
- (f) Motor vehicles and marine vessels. Motor vehicles and marine vessels may contain engines subject to the exhaust emission standards in this part 1048. Evaporative emission standards apply to these products as follows:
- (1) Marine vessels using spark-ignition engines are subject to the requirements of 40 CFR part 1045. The vessels are not required to comply with the evaporative emission standards and related requirements of this part 1048.
- (2) Motor vehicles are subject to the requirements of 40 CFR part 86. They are not required to comply with the evaporative emission standards and related requirements of this part 1048.

[73 FR 59232, Oct. 8, 2008]

§ 1048.110 How must my engines diagnose malfunctions?

The following engine-diagnostic requirements apply for engines equipped

with three-way catalysts and closed-loop control of air-fuel ratios:

- (a) Equip your engines with a diagnostic system. Starting in the 2007 model year, equip each engine with a diagnostic system that will detect significant malfunctions in its emission-control system using one of the following protocols:
- (1) If your emission-control strategy depends on maintaining air-fuel ratios at stoichiometry, an acceptable diagnostic design would identify malfunction whenever the air-fuel ratio does not cross stoichiometry for one minute of intended closed-loop operation. You may use other diagnostic strategies if we approve them in advance.
- (2) If the protocol described in paragraph (a)(1) of this section does not apply to your engine, you must use an alternative approach that we approve in advance. Your alternative approach must generally detect when the emission-control system is not functioning properly.
- (b) Use a malfunction-indicator light (MIL). The MIL must be readily visible to the operator; it may be any color except red. When the MIL goes on, it must display "Check Engine," "Service Engine Soon," or a similar message that we approve. You may use sound in addition to the light signal. The MIL must go on under each of the following circumstances:
- (1) When a malfunction occurs, as described in paragraph (a) of this section.
- (2) When the diagnostic system cannot send signals to meet the requirement of paragraph (b)(1) of this section.
- (3) When the engine's ignition is in the "key-on" position before starting or cranking. The MIL should go out after engine starting if the system detects no malfunction.
- (c) Control when the MIL can go out. If the MIL goes on to show a malfunction or system error, it must remain on during all later engine operation until servicing corrects the malfunction. If the engine is not serviced, but the malfunction or system error does not recur for three consecutive engine starts during which the malfunctioning system is evaluated and found to be working properly, the MIL may stay off during later engine operation.

§ 1048.115

- (d) Store trouble codes in computer memory. Record and store in computer memory any diagnostic trouble codes showing a malfunction that should illuminate the MIL. The stored codes must identify the malfunctioning system or component as uniquely as possible. Make these codes available through the data link connector as described in paragraph (g) of this section. You may store codes for conditions that do not turn on the MIL. The system must store a separate code to show when the diagnostic system is disabled.
- (e) Make data, access codes, and devices accessible. Make all required data accessible to us without any access codes or devices that only you can supply. Ensure that anyone servicing your engine can read and understand the diagnostic trouble codes stored in the onboard computer with generic tools and information.
- (f) Consider exceptions for certain conditions. Your diagnostic systems may disregard trouble codes for the first three minutes after engine starting. You may ask us to approve diagnostic-system designs that disregard trouble codes under other conditions that would produce an unreliable reading, damage systems or components, or cause other safety risks. This might include operation at altitudes over 8,000 feet.
- (g) Follow standard references for formats, codes, and connections. Follow conventions defined in 40 CFR 1045.110 or in the following documents (incorporated by reference in §1048.810) or ask us to approve using updated versions of (or variations from) these documents:
- (1) ISO 9141-2 Road vehicles-Diagnostic systems—Part 2: CARB requirements for interchange of digital information, February 1994.
- (2) ISO 14230-4 Road vehicles—Diagnostic systems—Keyword Protocol 2000—Part 4: Requirements for emission-related systems, June 2000.

[67 FR 68347, Nov. 8, 2002, as amended at 73 FR 59232, Oct. 8, 2008]

\$ 1048.115 What other requirements apply?

Engines that are required to meet the emission standards of this part must meet the following requirements:

- (a) Crankcase emissions. Crankcase emissions may not be discharged directly into the ambient atmosphere from any engine throughout its useful life, except as follows:
- (1) Engines may discharge crankcase emissions to the ambient atmosphere if the emissions are added to the exhaust emissions (either physically or mathematically) during all emission testing. If you take advantage of this exception, you must do the following things:
- (i) Manufacture the engines so that all crankcase emissions can be routed into the applicable sampling systems specified in 40 CFR part 1065.
- (ii) Account for deterioration in crankcase emissions when determining exhaust deterioration factors.
- (2) For purposes of this paragraph (a), crankcase emissions that are routed to the exhaust upstream of exhaust aftertreatment during all operation are not considered to be discharged directly into the ambient atmosphere.
- (b) Torque broadcasting. Electronically controlled engines must broadcast their speed and output shaft torque (in newton-meters). Engines may alternatively broadcast a surrogate value for determining torque. Engines must broadcast engine parameters such that they can be read with a remote device, or broadcast them directly to their controller area networks. This information is necessary for testing engines in the field (see §1048.515). This requirement applies beginning in the 2007 model year. Smallvolume engine manufacturers may omit this requirement.
- (c) EPA access to broadcast information. If we request it, you must provide us any hardware or tools we would need to readily read, interpret, and record all information broadcast by an engine's on-board computers and electronic control modules. If you broadcast a surrogate parameter for torque values, you must provide us what we need to convert these into torque units. We will not ask for hardware or tools if they are readily available commercially.
 - (d) [Reserved]
- (e) Adjustable parameters. Engines that have adjustable parameters must meet all the requirements of this part for any adjustment in the physically